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SUMMARY

We present a collocated Mach-uniform pressure-correction method. By using a low Mach adapted
AUSM+ �ux for the spatial discretization, we reach Mach-uniform accuracy. Mach-uniform e�ciency
is obtained by a pressure-correction equation based on the energy equation. Furthermore, we take heat
conduction into account, which as far as we know, has never been done before in the context of
Mach-uniform pressure-correction methods. An explicit treatment of the conduction terms results in
a di�usive limit on the time step. To avoid this, a coupled solution of the energy equation and the
continuity equation is needed. The results for both the adiabatic and the non-adiabatic algorithms are
in full accordance with the developed theory. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mach-uniform algorithms are an indispensible tool in numerous �ow situations [1]. For years,
the CFD-world has been searching for the ideal algorithm that can handle any level of Mach
number. With preconditioning, the originally high speed density-based algorithms were ex-
tended towards the low Mach number regime [2]. The solution technique is then coupled,
involving the solution of large systems. As a segregated algorithm, the pressure-correction
method is a well-established technique for incompressible �ow [3]. However, the exten-
sion towards the higher Mach numbers requires special attention. Several attempts have been
done to develop compressible pressure-correction methods [4–12], but only a few are really
Mach-uniform, meaning that they reach a good accuracy and convergence over the whole
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Mach number range [1, 11, 12]. In this paper, we present a Mach-uniform, collocated pressure-
correction method. Furthermore, we will take into account heat conduction, which, as far as
we know, has never been done before in the context of Mach-uniform pressure-correction
algorithms. In the present paper we explain the basic idea behind the algorithm. For a de-
tailed description of the mathematical background and implementation, we refer to a future
paper [13].

2. GOVERNING EQUATIONS AND FINITE VOLUME METHOD

We consider a one-dimensional inviscid �ow of a perfect gas. The governing Navier–Stokes
equations are the continuity, momentum and energy equation. The conductive heat �ux is
expressed by Fourier’s law and is discretized centrally. The equations are nondimensionalized
by choosing reference quantities for pressure, temperature and length scale. A collocated
vertex-centred �nite volume method and an Euler implicit time integration scheme are applied
to discretize the Navier–Stokes equations.

3. CONSTRUCTION OF A MACH-UNIFORM PRESSURE-CORRECTION METHOD

3.1. Mach-uniform accuracy

We use the advection upwind splitting method (AUSM+) for the spatial discretization [14],
where the transported quantities are �rst-order upwinded. At high Mach numbers the AUSM-
�ux performs very well. At low Mach numbers special measures have to be taken with respect
to the scaling and decoupling problem [15].

3.2. Mach-uniform e�ciency

The low Mach sti�ness problem causes a breakdown of convergence at low Mach numbers.
This can be remedied by treating the terms which contain acoustic information implicitly [16].
The quasi-linear Euler equations, learn that the acoustic information, transported with velocity
u± c, is given by �u± �p=�c. When the continuity equation is removed from the quasi-linear
set, the quantities transported at velocity u± c are unchanged. Therefore, the reduced system
still contains all acoustic information. We conclude that all acoustic information is contained
in the momentum and energy equations. Therefore, corrections will be introduced into the
latter two equations, leading to a pressure-correction equation that is based on the energy
equation.

4. IMPLEMENTATION FOR ADIABATIC FLOW

We start with an adiabatic �ow, i.e. there is no heat conduction. For this case, the presented
method is in essence the same as the one in References [11, 12]. The method is conservative.
The �rst step in the algorithm is a predictor step for density �∗ and momentum (�u)∗ from
the continuity and momentum equation, respectively. Density is updated by this value. The
�eld thus derived, does not ful�l the energy equation. Therefore, corrections for pressure p′
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and momentum (�u)′ are introduced, pn+1 =pn+p′, (�u)n+1 = (�u)∗+(�u)′, with n and n+1,
respectively, the old and new time level. The momentum corrections are related to the pressure
corrections through the momentum equation. Every implicit term in the energy equation is
written as a function of pressure corrections. For example, the total enthalpy �ux is written as

(�Hu)n+1i+1=2 = (�H)
∗
i u

∗
i+1=2 +H

∗
i (�u)

′
i+1=2 + (�H)

′
i+1=2u
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�− 1p
′
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′
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This yields a pressure-correction equation, from which pressure is corrected. After this,
momentum and velocity are corrected. The equation of state is used to update temperature.

5. IMPLEMENTATION FOR NON-ADIABATIC FLOW

Due to the heat conduction terms, temperature now appears into the energy equation, which
we used so far as pressure determining. We present two di�erent approaches to cope with this.

5.1. Pressure-correction method with explicit temperature update

We can simply leave the heat transfer terms into the RHS of the energy equation and calculate
them by means of old temperatures values. Therefore, extra terms are added to the RHS of
the pressure-correction equation. The rest of the procedure remains unchanged. We refer to
this method as explicit, because the temperature terms in the energy equation are treated in an
explicit way. Consequently, we expect a time step limit due to the di�usive terms. The latter
is determined by the Von Neumann number, Ne=��t=�x2, with � the conduction coe�cient,
�x the cell length and �t the time step.

5.2. Coupled pressure and temperature correction method

To remove the di�usive time step limit, the temperature terms in the energy equation have to
be treated implicitly. Therefore, we introduce temperature corrections T ′ into the RHS of the
energy equation. The LHS is treated as for the non-adiabatic case, thus introducing pressure
corrections. The discretized energy equation therefore becomes an equation for both pressure
and temperature corrections. A second equation containing both pressure and temperature
corrections, is derived from the continuity equation. The density is expanded as
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and the momentum �ux is again related to pressure corrections through the momentum equa-
tion. This results in a second equation for pressure and temperature corrections. The two
correction equations are solved in a coupled way. We therefore refer to this method as
coupled correction method. The predictor step is the same as in the adiabatic algorithm.
From the coupled solution of p′ and T ′, pressure and temperature are updated. Density is
updated through (3). All systems are solved with a direct solver, though the positive structure
allows for a more optimized solver.
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6. RESULTS

As a test case, we take a converging–diverging one-dimensional nozzle. These simple tests
will show clearly the basic features of the described Mach-uniform algorithm.

6.1. Adiabatic �ow

First we test the adiabatic implementation of Section 4. Both low and high speed �ows are
considered.

6.1.1. Low speed �ow. We consider a subsonic nozzle �ow with a throat Mach number Mt

of 10−3. The time step �=�t=�x is calculated from a chosen convective CFL-number, i.e.
�=CFLu=max(u). We remark that this corresponds with an acoustic CFL number that is about
1000 times higher. The CFLu number could be taken arbitrarily high; there is no stability limit.
Figures 1(a) and (b) show the results for pressure and Mach number, computed at a CFLu
number of 10. Figure 1(c) shows the convergence plots for computations at CFLu numbers
of 1 and 10. The Mach-uniform algorithm shows an excellent convergence rate.
In the literature, we found two examples of pressure-correction methods which also use

an energy equation for the pressure corrections [1, 11, 12, 17]. Based on a low Mach number
perturbation analysis [1, 18], a parameter Mr , which indicates the Mach number level, is
introduced. Furthermore, the pressure is split in a zeroth- and second-order part. This shows
clearly what happens in the low Mach number limit, but it is not essential in order to obtain
Mach-uniform e�ciency. In our algorithm, we do not use the parameter nor the explicit
pressure splitting: the algorithm reduces automatically to the right low Mach number limit.
Finally, our algorithm is formulated on a collocated grid, while in the cited examples a
staggered grid is used.
Figure 1(c) also shows the convergence plots for a pressure-correction algorithm that uses

the continuity equation to construct the pressure-correction equation. The computations could
only be made stable under a severe underrelaxation, and it has a very bad convergence rate
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Figure 1. Subsonic nozzle �ow, Mt = 0:001: (a) Mach number; (b) relative pressure (p−pout). Symbols:
Mach-uniform algorithm, CFLu =10. Solid line: analytic solution; and (c) convergence plot, CFLu =1
and 10. Energ: Mach-uniform algorithm. Cont: equivalent algorithm based on the continuity equation

(computation with underrelaxation (UR)).
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Figure 2. Transonic nozzle: (a) Mach number; (b) pressure distribution. Symbols: Mach-uniform
algorithm, CFLu =1. Solid line: analytic solution; and (c) convergence plot, CFLu =1 and 10.

Table I. Nozzle �ow.

Stable? Time steps Calc time

Nozzle � Ne Exp Coup Exp Coup Exp Coup

Subsonic 10−5 10−3 Yes Yes 220 208 19.6 23.5
M t = 0:01 0.01 1 Yes Yes 259 224 22.3 24.5
Ne≈ �CFLu=0:01 0.1 10 No Yes — 337 — 36.8

1 100 No Yes — 646 — 70.4
10 1000 No Yes — 222 — 24.5

Subsonic 10−5 10−4 Yes Yes 1186 1180 101.2 128.8
M t = 0:1 0.1 1 Yes Yes 1182 1176 101.1 128.4
Ne≈ �CFLu=0:1 1 10 No Yes — 1211 — 132.2

10 100 No Yes — 2019 — 228.7

Transonic 10−5 10−5 Yes Yes 3280 3309 290.0 372.9
Ne≈ �CFLu=1 1 1 Yes Yes 3169 3200 279.9 359.0

10 10 No Yes — 4850 — 549.7
100 100 No Yes — 3696 — 413.3

Stability, number of time steps till convergence and calculation time, for di�erent values of �. Exp: explicit tem-
perature update. Coup: Coupled correction method.

at this low Mach number. However, several examples of pressure correction methods based
on the continuity equation are found in the literature [4–10].
We conclude that the Mach-uniform algorithm performs very well for this low speed �ow,

with regard to accuracy as well as e�ciency.

6.1.2. High speed �ow. Also for the case of a transonic nozzle there is no CFL-limit.
Figure 2(c) shows the convergence plot for a computation at CFLu =1 and 10. The Mach
number and pressure distributions are shown in Figures 2(a) and (b). We conclude that also
for the high Mach numbers we reach a good convergence rate and accuracy. Clearly, the
algorithm shows Mach-uniform e�ciency and accuracy.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1205–1211



1210 K. NERINCKX, J. VIERENDEELS AND E. DICK

6.2. Non-adiabatic �ow

With the time step � derived from the convective CFL number and �x=1, the di�usive limit
turns into a restriction for the heat conduction coe�cient. Table I shows the stability results
for di�erent nozzle �ows, together with the number of time steps till convergence (residue
10−12 for the subsonic �ow and 10−8 for the transonic �ow) and the calculation time. The
results show clearly that the explicit method becomes unstable as soon as the Von Neumann
number becomes higher than order unity. The coupled method, however, stays stable no matter
how high the nondimensional conduction coe�cient � is taken.

7. CONCLUSION

We presented a Mach-uniform pressure-correction method. We showed how an AUSM+ �ux
leads to Mach-uniform accuracy, and how a pressure-correction equation based on the energy
equation leads to Mach-uniform e�ciency. When heat conduction is present, an explicit treat-
ment of the conduction terms results in a di�usive limit on the time step. To escape this, a
coupled solution of the energy equation and the continuity equation is needed. The tests on
di�erent nozzle �ows are in full accordance with the developed theory.
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